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Abstract. Feigenbaum'spmeterscatingexponents6 ar~calcdatedfarl.3~ .l.5m,l.7m,l.9" 
sequences of periodic orbits in a class of rime-dimensional non-measure-preserving reversible 
mappings. Some preliminary results on orbit scaling exponenh for 1 .3"' sequences x e  also 
included. Scaling exponents found so far are the same as those found for hvo-dimensional 
reversible mappings. 

The presence of time-reversal symmetry (reversibility) in a dynamical system has important 
consequences for the dynamic behaviour (for a review see [I]). Reversible mappings of 
the plane have been shown to exhibit a number of qualitative and quantitative similarities 
with their Hamiltonian (symplectic) counterparts 11-51. Analogous to Hamiltonian systems, 
repeated application of local versions of the (reversible) KAM theorems and the Poincar6- 
Birkhoff theorem lead to a complex picture of phase space in which structures are repeated 
on all scales. A particular aspect of this self-similarity known as class renormalization 161 
concerns the scaling properties of periodic orbits. The infinite hierarchy of periodic orbits 
observed is known to play an essential role in transport models of reversible and Hamiltonian 
system [7]. 

Period-doubling has been studied extensively in reversible area-preserving mappings 
[8-141, non-area-preserving reversible mappings [1,2] of the plane and polynomial 
mappings of the complex pl&e [15]. Sequences of higher-order bifurcating sequences 
(n-tupliig with n 2 2 )  have also been studied in these mappings [6,16,17]. The scaling 
behaviour of higher-dimensional mappings and their associated universality classes are less 
well understood and study has been restricted to period doubling in four- and six-dimensional 
symplectic reversible mappings [18-211. Period doubling associated with curves of orbits 
in three-dimensional volume-preserving reversible mappings with one integral have recently 
been examined [ZZ]. In this study we constmct a three-dimensional non-measure-preserving 
reversible mapping and study the scaling properties of sequences of odd periodic orbits in 
some examples of this mapping. 

A~mapping T : Rm H Rm is called reversible if it can be written as the composition of 
two involution mappings I1 and 12, 

T = I1 o I ,  

I1 o I ,  = 1, o I ,  = . I d .  

(1) 

(2 )  

and 

Define 
=Fix(~,)nFix(T"r,) i =1,2 

(3) 
B, = Fix(I2) nFix(T"I1) 
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where Fix denotes the set of invariant points of a mapping and T" denotes the mapping T 
composed n times. If T E An.i (i = 1,2), then T is a point on a periodic orbit of length 2n. 
If T E 4, then T is a point on a periodic orbit of length 2n + 1 [l]. 

Now consider a class of non-measure and orientation-preserving two-dimensional 
(m = 2) reversible mappings given by 

G S Turner and G R W Quispel 

with involutions 

where functions gl and g, are arbitrary while f1 and f3 are arbitrary odd functions (this 
corresponds to class nT of [I]). The fixed points of the involutions ( I i r  = T ,  i = 1,2) 
form curves in the plane called symmetry lines. As mentioned above, symmetry lines have 
special significance because along these lines are points belonging to periodic orbits of T. 
Not all periodic orbits of T have a point on one or both of these l i e s  but those that do ate 
referred to as s y m r r i c  periodic orbits. The task of finding symmebk periodic orbits is 
thus reduced to a search along a line rather than a plane. Symmetric orbits of even period 
have two points on one of the symmetry lines while symmetric orbits of odd period have 
one point on both of the lines. Symmetric periodic orbits have return Jacobian determinant 
equal to &l depending on whether T is orientation preserving (+l) or reversing (-1) and 
on the odd or even length of the periodic orbit. Our strategy for extending the class of 
mappings given by (4) into three dimensions is to first trivially extend both the involutions 

Clearly z is decoupled in these equations and to remedy this we conjugate one of the 
involutions, 1, by a nonlinear invertible transformation 

S : x ' = x + € z h ( y )  y '=y  z ' = z + € y  (8) 

where h is an arbitrary function, E is a perturbation parameter (when E = 0 (8) is the identity 
and the composition of the two involutions is decoupled in z and hence effectively two- 
dimensional). Note that I; = s-' o I, o S is still an involution. We now construct the new 
mapping T30 : R3 H R3 as 

G D  = 1, 0 1; = l1 0 (s-' 0 12 0 s) (9) 

which written explicitly gives 
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Table 1. Parameter and function settings for the four mappings. Examples 1, 2 and 3 am given 
by (10) and example 4 by (12). 

Example2 Example 2 Example 3 Example 4 
--c --c - g3 0 

M y )  Y Y Y2 - 
c 0.02 0.1 0.1 - 
e ~ 0.001 0.001 0.01 0.01 

Obseri that Fix Il is onedimensional (curve) while Fiu 1; is two-dimensional (pl; 8 .  

Referring to (3), this means that the set A-,,  will, in general, be empty. The set An,2 will be 
infinite and the set B, will be finite. This corresponds respectively to zero, infinitely many 
or finitely many symmetric periodic orbits. Since we wish to have a finite set of periodic 
orbits of a given length we only consider the last case here, i.e. symmetric periodic orbits 
of odd length (cf [22]). 

For our first three examples we choose (following 121) the functions f1, f3, gl and g, 
as 

The parameter c represents the non-measure-preserving perturbation and is fixed, while 
k is a free parameter which we use to follow sequences of periodic orbits. Table 1 indicates 
the various choices of g3, h(y), c and c for OUT three examples. Our fourth example is also a 
non-measure-preserving reversible three-dimensional mapping constructed from a different 
class of two-dimensional mappings (class I of~[l]) in the same way 

(12) 

The linear stability of a periodic orbit is determined by the eigenvalues of the Jacobian 
Again k is a free parameter while E is specified in table 1. 

matrix which satisfy 

h3 - Ah2 + BA - C = 0 A = t r ( J )  B = [tr2(J) - tr(Jz)]/2 C = det(J) (13) 

where t r (J )  and det(J) denote the trace and determinant of the 3 x 3 return Jacobian matrix. 
The three coefficients A, B and C are not independent and can be  reduced for symmetric 
odd periodic orbits in orientation-reversing mappings C = det(J) = -1 and we have one 
eigenvalue A = -1 [22] which implies A = - B ,  so effectively there is just the one free 
coefficient (as is the case in two dimensions). The residue [23] can be written as 

R = +[2 - ( t r ( J )  + l)] . (14) 

For R < 0 or R > 1 the orbit is unstable (hyperbolic) while for 0 < R.< 1 the orbit is 
stable (elliptic). For elliptic orbits we have 

R = sinZ(nw) (15) 



760 G S Turner and G R W Quispel 

Table 2 Panmeter scaling exponents S(p,g) for various plq-tupling sequences in three- 
dimemiom1 reversible maps. For comparison we give the corresponding results for two- 
dimemiom1 area-preserving reversible maps [6.161 in the last IOW. 

f 2 f 4 ; f 5 
Example 1 20.184 20.047 - 10.807 - 9.08 
Example 2 20.1848 20.047 - 10.80 - 9.0 

Example 4 20.1 - 30.2 - 39.2 
2D rmps 20.1848 20.0478 30.257 10.8076 39.279 9.0814 

Example 3 20.184 20.047 -~ 10.807 - 

Table 3. Orbit scaling exponents for 4-tupling sequences in three-dimensional reversible maps 
(see figure 1). For comparison we w e  the corresponding results for two-dimemional area- 
preserving reversible maps in the last row. 

U1 a2 81 82 
, , , ,, , , ,. ., , , . , , , , ,, , , 

Example I -17.9 2.45 5.94 -31.4 
Example2 -17.9 2.4, 5.94 -31.4 
2D nUPS -17.9 2.45 5.94 -31.4 

where o is the rotation number of a given orbit. Every periodic orbit is characterized by 
a rational rotation number o = p/q (i.e A = exp(Zrip/q)) so that setting w equal to 
some rational frequency in (15) gives the critical value of the residue for which periodic 
orbits of the same frequency are boml.. The values of k corresponding to the critical 
value of the residue for each orbit with the appropriate frequency have been observed to 
form a convergent sequence for various classes of mappings [l, 151. The convergence is 
asymptotically geometric with the scaling factor 6 given by 

(1 6) 

and the limiting value of 6 depends on the frequency, i.e. 6(p. q) [6,16,17]. 
We initially locate the sequences of periodic orbits 1-3"', 1.5"'. 1.7"' and 1.9"' in (10) for 

E = 0 (the two-dimensional orbits) then follow these orbits as E is increased to some fixed 
value (see table 1). For most sequences our starting point is the symmetric (elliptic) fixed 
point of T ~ o  (i.e. 1 = I), however, 5.3'" and 3.5"' sequences were also examined in some of 
the examples. As k is increased periodic orbits of various frequencies are born at the fixed 
point and the appropriate orbits are tracked. Periodic orbits with length of order lo6 were 
located using the secant method and calculations were performed in quadruple-precision VAX 
FORTRAN. In table 2 are the results obtained for parameter scaliigs of our four examples 
specified by (lo), (12) and table 1. In table 3 we present some preliminary results on orbit 
scaling for I .  3" sequences in two exampIes of the mapping (IO). We calculate the distance 
scalings associated with threepoints of each 1 .3"' orbit that have bifurcated from the point 
of the 1 .  3'"-' orbit that lies in the symmetry plane (see figure 1 and [16]; for alternative 
orbit scaling exponents for two-dimensional maps refer to [6]). The two distances for the 
1 .3'" orbit are calculated at the birth of, the 1 .  3"+' orbit. Two distance scalings of the 1 .3'" 
sequences of orbits were determined to be a = a~az = -4.4 and ,8 = ,8& -187. The 

t The eigenvalues of non-symmetric periodic orbits in one-parameter families of reversible maps generidy do not 
lie on the unit circle. Therefore, non-symmetric periodic orbits in such families of maps do nor exhibit q-tupling 
for q # 2. 
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J?igure 1. Schematic diagnm of the distances used to calculate the orbit scaling exponents 
ai and @i(i = 1,Z) for a 1 3m orbit. Drawn are the triangle formed by three points of the 
1 .3'" orbit (full circles denoted Pj. j = 1,. . .3) which has bifurmted from the 1 . 3m-1 orbit 
(open circle); the horizontal line represents the symmetry plane Fii(l& The points PI and P4 
(open square which is not a point in any of the orbits) are in Fix(I;). The distances calculated 
are indicated by the heavy lines. The orbit scalings are simply the ratio of each distance of 
successive orbits: (11.2 := (PI -Pd) , / (Pl  - P&-l and 81.2 := ( A  - P & / ( A  - P&-l. 
There is an alternation in the magnitude and sign of the distances so that they scale as the 
products E = mu2 and @ =@I&. 

-- -- 

scaling exponents obtained so far appear to be the same as those found for area-preserving 
two-dimensional mappings. We hope to publish an extended version of this work in the 
near future. 
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